Regulation of DNA binding activity and nuclear transport of B-Myb in Xenopus oocytes.
نویسندگان
چکیده
DNA binding activity and nuclear transport of B-Myb in Xenopus oocytes are negatively regulated. Two distinct sequence elements in the C-terminal portion of the protein are responsible for these different inhibitory activities. A C-terminal Xenopus B-Myb protein fragment inhibits the DNA binding activity of the N-terminal repeats in trans, indicating that intramolecular folding may result in masking of the DNA binding function. Xenopus B-Myb contains two separate nuclear localization signals (NLSs), which, in Xenopus oocytes, function only outside the context of the full-length protein. Fusion of an additional NLS to the full-length protein overcomes the inhibition of nuclear import, suggesting that masking of the NLS function rather than cytoplasmic anchoring is responsible for the negative regulation of Xenopus B-Myb nuclear transfer. During Xenopus embryogenesis, when inhibition of nuclear import is relieved, Xenopus B-myb is preferentially expressed in the developing nervous system and neural crest cells. Within the developing neural tube, Xenopus B-myb gene transcription occurs preferentially in proliferating, non-differentiated cells.
منابع مشابه
Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملSelecting karyophilic DNA cis elements in Xenopus laevis oocytes; a new approach.
The intracellular localisation and mobility of exogenous DNA introduced into Xenopus laevis oocytes is largely unknown. In this paper, we report a new technique to investigate the cytoplasmic/nuclear transport of a random pool of linear, double-stranded, oligomeric DNA of 147 bp in length. We chose a combinatorial approach which made use of repetitive rounds of selection and amplification to se...
متن کاملTransport of DNA into the nuclei of xenopus oocytes by a modified VirE2 protein of Agrobacterium.
We used Agrobacterium T-DNA nuclear transport to examine the specificity of nuclear targeting between plants and animals and the nuclear import of DNA by a specialized transport protein. Two karyophilic Agrobacterium virulence (Vir) proteins, VirD2 and VirE2, which presumably associate with the transported T-DNA and function in many plant species, were microinjected into Drosophila embryos and ...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 15 شماره
صفحات -
تاریخ انتشار 1999